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SUMMARY

A new approach to the robust handling of non-linear constraints for GAs (genetic algorithms) optimiza-
tion is proposed. A speci�c feature of the approach consists of the change in the conventional search
strategy by employing search paths which pass through both feasible and infeasible points (contrary to
the traditional approach where only feasible points may be included in a path). The method (driven by
full Navier–Stokes computations) was applied to the problem of multiobjective optimization of aerody-
namic shapes subject to various geometrical and aerodynamic constraints. The results demonstrated that
the method retains high robustness of conventional GAs while keeping CFD computational volume to
an acceptable level, which allowed the algorithm to be used in a demanding engineering environment.
Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last decade, optimal aerodynamic shape design has aroused considerable interest. In
particular, robust software for multiobjective aerodynamic optimization through drag mini-
mization is in high demand worldwide.
The �rst optimization method in aerodynamics was that of Lighthill [1]. Presently, ad-

vanced optimization tools are mostly based on the fully deterministic gradient approach [2]
or, alternatively, on the probabilistic evolutionary algorithms [3, 4].
Many modern gradient-based methods originate from the work of Pironneau [5] who created

a framework for the formulation of elliptic design problems. The present state-of-the-art of this
class of methods can be found in References [6, 7], where the gradients are computed from
the solutions to the �ow equations and its adjoint equations. The current status of non-gradient
optimization methods is given in References [8, 9].
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1340 S. PEIGIN AND B. EPSTEIN

A vast majority of optimization problems are constrained problems. Unfortunately, the so-
lution of the optimization problems with non-linear constraints still remains sti� and open
from a theoretical as well as an application point of view.
The presence of constraints signi�cantly decreases the performance and computational e�-

ciency of the classical conjugate-gradients (CG) optimization methods. To explain why this
happens, we should take into account that the constraints divide the search space F into two
sub-domains: a feasible region Ff and an infeasible one, Fn. Topologies of the feasible and
infeasible sub-domains can be rather complex. The search strategy of the traditional CG-type
optimization methods is based on the evaluation of �tness in the neighbourhood of a point
where the objective function is presumably smooth, and on the determination of the local
derivatives of the objective function at the above point.
If the point is located close to the constraints boundary, the radius of this neighbourhood can

become very small. In such cases the calculation of the derivatives of the objective function
with appropriate accuracy is an extremely di�cult problem. An additional di�culty which
considerably decreases the computational e�ciency of CG-type methods is the fact that the
determination of such a neighbourhood is not an easy task. It results in the expenditure of
large amounts of computing time for unsuccessful evaluations of the cost function at the points
which are located in the infeasible sub-domain, because the exact position of the constraints
boundary is not known a priori.
The classical approach to resolve this problem for CG methods is a concept of penalty

functions which penalize infeasible solutions. These methods di�er in many important details
of how the penalty function is designed and applied to infeasible solutions. Let us only note
that this approach is not robust enough, being strongly dependent on a speci�c problem, and
there are no general guidelines on designing penalty functions.
As it is stressed in Reference [7], the penalty parameters are di�cult to choose in practice,

because the theory requires that they tend to in�nity while the conditioning of the problem
deteriorates when they are large. In fact, the application of the penalty approach is some kind
of art, because for real success the user should have good intuition about the behaviour of the
objective function near the constraints boundary. In addition, this method further aggravates
the computational e�ciency of the CG-type algorithms.
The design problem may be characterized by a mix of continuous, discrete and

integer design variables, and the resulting design space can be non-convex or even dis-
jointed. For all these reasons, optimizations methods which do not rely on the computa-
tion of gradients, in particular evolutionary programming and GAs, became highly popular
[3, 8, 9].
Unfortunately, in their basic form GAs are not capable of handling constraint functions

limiting the set of feasible solutions. Therefore additional methods are needed to keep the
solutions in the feasible region [33, 34].
During the last few years several categories of methods (both direct and indirect) were pro-

posed for handling constraints by GAs for parameter optimization problems. The classi�cation
of these methods is presented in survey [10].
One of these categories contains the methods which are based on preserving feasibility of

the solutions [11]. The idea is to use specialized genetic operators which transform feasible
individuals into feasible individuals, that is, operators, which are closed on the feasible part
Ff of the search space. This approach assumes linear constraints only and a feasible initial
population.
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Another interesting class of methods employs the idea of decoders. In these techniques, a
chromosome ‘gives instructions’ on how to build a feasible solution [12]. However, the use
of decoders for continuous domains has not been investigated.
There are a few methods which emphasize the distinction between feasible and infeasible

solutions in the search space F. For example, the method proposed in Reference [13] (called
a behavioural memory approach) considers the constraints in a sequence: a switch from one
constraint to another is made where a su�cient number of individuals, feasible with respect
to this constraint, are attained in the population.
Many evolutionary algorithms incorporate a constraint-handling method based on the con-

cept of exterior penalty functions, which penalize infeasible solutions [14–20]. Similar to CG
methods, there are no general guidelines on designing penalty functions in the GAs frame-
work. Moreover, penalty function approach in general is known to often modify the actual
objective function space so much that the resulting optimum point can be unacceptably far
from the true optimum location.
Usually, the penalty function is based on the distance of a solution from the feasible region

Ff , or on the e�ort to ‘repair’ the solution, that is to force it into Ff . For example, a method
of static penalties was proposed in Reference [17]; it assumes that for every constraint we
establish a family of intervals, which determine appropriate penalty coe�cients. The method
of dynamic penalties was suggested in Reference [18]. A method based on adaptive penalty
functions was developed in Reference [16], where both the search length and constraint sever-
ity feedback were incorporated. It involves the estimation of a near-feasible threshold for each
constraint. Such thresholds indicate ‘reasonable’ distances from the feasible region Ff .
An alternative to traditional penalty methods is the segregated genetic algorithm, which was

developed in Reference [20]. This is yet another way to handle the problem of robustness
on the penalty level. Here two di�erent penalized �tness functions with static penalty terms
(smaller and larger, respectively) are designed.
Nevertheless, the overview of the subject shows that unfortunately, the existing approaches

are mainly problem-dependent or that they are restricted to certain types of �tness functions.
In particular, it is not clear what is the in�uence of characteristics of a constrained problem
(such as the number of linear and non-linear constraints, the type of the objective function,
the ratio of areas of feasible search space to the whole, etc.) on the performance of the
algorithm.
We can conclude that although there has been extensive research on the constraints handling

methods for GAs, this issue is still not well understood and still remains an open problem to
be solved.
In this paper we suggest a new approach to robust handling of non-linear constraints in

the framework of GAs. The approach is applicable to the optimization problems where the
constraints boundary is not known in advance and the optimal point may be located on the
boundary itself. Basically the approach can be outlined as follows:

(1) Change of the conventional search strategy by employing search paths which pass
through both feasible and infeasible points (instead of the traditional approach where
only feasible points may be included in a path). Since in our case a topology of feasible
and infeasible sub-domains is rather complex, the realization of such a strategy should
signi�cantly improve the accuracy and e�ciency of optimization. The idea is that the
information from the infeasible sub-domains can be very important for the optimization,
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as a path to the optimal point via infeasible points can be essentially shorter (or even
the only possible, in the case of a non-simply-connected feasible domain).

(2) To implement the new strategy, it is suggested to extend the search space. This requires
the evaluation (in terms of �tness) of the points, which do not satisfy the constraints
imposed by the optimization problem. A needed extension of an objective function
may be easily implemented by means of GAs due to their basic property: contrary to
classical optimization methods, GAs are not con�ned to only smooth extensions.
In fact, such extension should satisfy only the condition that follows immediately

from the main idea to increase diversity of the current population: in infeasible regions,
the objective function should be de�ned in such a way that it keeps in the current
population a su�cient number of infeasible individuals, which are located rather close
to the constraints boundary. In such a case we can expect, with a rather high probability,
that the crossover between feasible and infeasible individuals will produce high-�tness
children.

It is important to emphasize that the proposed approach, contrary to penalty function meth-
ods, (1) determines the value of �tness everywhere including the infeasible region Fn; (2)
does not change the value of the objective function in the whole feasible region Ff and (3)
does not require the smoothness of the �tness function across the constraints boundary.
An additional weakness of GAs lies in their poor computational e�ciency, which prevents

their practical use where the evaluation of the cost function is too computationally heavy. To
overcome this obstacle, we introduce an intermediate computational tool which is based on
reduced-order models (ROM) approach.
This tool approximates the objective function using a very limited number of exact CFD

computations while providing a fast and reasonably accurate computational feedback in the
framework of GAs search. In order to ensure the accuracy and robustness of the method,
a multidomain prediction-veri�cation principle is used. On the prediction stage, the genetic
optimum search is concurrently performed on a number of search domains, and then, the whole
set of corresponding optima is veri�ed through full Navier–Stokes computations. Additionally,
in order to ensure the global character of the search, the algorithm is iterated.
The above methodology was applied to multipoint constrained design of aerodynamic

airfoils. Note, that the aerodynamic shapes optimization problem is an exemplary case of
problems where the non-linear constraints strongly a�ect the solution. In such problems, the
constraints boundary is not known in advance, and moreover, the optimal point is frequently
located on this boundary.
The approach employs GAs as an optimization tool in combination with a ROM method

based on local data bases obtained by full Navier–Stokes computations. The important features
of the approach also include: (1) scanning of the optimization search space by a combination
of full Navier–Stokes computations with the ROM method (2) multilevel parallelization of the
whole computational framework which e�ciently makes use of computational power supplied
by massively parallel processors (MPP).
The results demonstrated that the method combines e�cient handling of various nonlinear

constraints with high accuracy of optimization. The method retains high robustness of conven-
tional GAs while keeping CFD computational volume to an acceptable level due to a limited
use of full Navier–Stokes computations. A signi�cant computational time-saving allowed to
introduce the method into engineering environment.
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The paper has the following structure: The problem description is given in Section 2. In
Section 3 a novel strategy for the handling of nonlinear constraints imposed on the opti-
mization problem in the framework of GAs, is suggested. In Section 4 a new approach to
improve computational e�ciency of GAs is proposed. The implementation of the optimization
algorithm is described in Section 5. Numerical results of optimization are given and analysed
in Section 6.

2. PROBLEM STATEMENT

In this section a multipoint optimization of 2D airfoils is considered. In the case of the single
point optimization problem, the objective is to minimize the cost function Q=CD (total drag
coe�cient) of a two-dimensional pro�le subject to the following classes of constraints:

(1) Aerodynamic constraints such as prescribed constant total lift coe�cient C∗
L.

(2) Geometrical constraints on the shape of the airfoil surface: relative thickness of the
pro�le t=c, radius of leading edge RL, trailing edge angle �, shape ‘freeze’ of certain
portions of airfoil (such as lower or upper surfaces, trailing (leading) edge region,
etc.):

t=c¿(t=c)∗; RL¿R∗
L; �T¿�∗

T (1)

where values (t=c)∗, �∗
T and R

∗
L are prescribed parameters of the problem.

The single-point design airfoil must be analysed over a range of Mach numbers and lift
coe�cients to ensure the adequacy of the o�-design performance. To reach this goal multipoint
optimization is needed where the objective function is a weighted combination of single point
cost functions:

Q=
P∑
i=1
wi · CDi ;

P∑
i=1
wi=1 (2)

where the coe�cients wi are non-negative and P is the number of the optimization points.
As a gas-dynamic model for calculating CD and CL values, the full Navier–Stokes equations

are used. Numerical solution of the full Navier–Stokes equations was based on the code NES
[21, 22].
The NES code is based on the essentially non-oscillatory (ENO) concept [23] with a �ux

interpolation technique [24]. The important advantage of the solver NES as a driver of the
optimization process is its ability to supply reliable and su�ciently accurate results already on
relatively coarse meshes, and thus to reduce dramatically the volume of CFD computations.

3. TREATMENT OF CONSTRAINTS IN THE FRAMEWORK OF GAs

GAs became highly popular as optimization methods in the last two decades [25]. They
are hybrid semi-stochastic=deterministic optimization methods that are conveniently presented
using the metaphor of natural evolution. The GA algorithms are based on the evaluation of a
set of solutions, called population. The population is treated with genetic operators.
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As a basic algorithm, a variant of the �oating-point GA is used. We apply the tournament
selection, which enables us to increase the diversity of the parents. Three types of crossover
operator have been employed: single point, uniform and arithmetical crossover. As the muta-
tion operator we applied the non-uniform mutation de�ned by Michalewicz [25]. To resolve
one of the main problems that arises in GAs—a premature convergence—we used distance-
dependent mutation [26]. This approach consists of using the distance between two mates in
order to compute the mutation rate. This means that the mutation rate is no longer a constant
parameter; it is dynamically computed for both children and depends on the parents. Every
time a couple of individuals is chosen for mating, the mutation rate is computed in order
to be applied to their children after crossover occurs. If the parents are quite close (that is,
their mating is likely to be considered as ‘incest’), that would lead to a high mutation rate
for their children, whereas mutation rate will be smaller if they are di�erent. To improve the
convergence of the algorithm we also use the elitism principle [27].
The optimization method resulted in the following pseudo-code:

t=0
initpopulation P(t) / random or random + initial solutions /
while not converged do
P∗(t) := selectparents P(t) / tournament selection /
recombine P∗(t) / single point, uniform or arithmetical crossover /
mutate P∗(t) / non-uniform + distance-dependent mutation /
evaluate P∗(t) : P(t + 1) :=P∗(t) + best(P) / elitism /
t := t + 1
enddo

To explain our constraint-handling approach let us assume that we have to �nd the min-
imum of the objective function f(x) in the feasible region Ff , de�ned by non-linear con-
straint g(x)60. Let us also consider the most challenging case when the optimal point xo
is located close to the constraints boundary of the feasible region g(x)=0 or even lies on
the boundary which is not exactly known in advance, before evaluation of the objective
function.
In order to create the robust and computationally e�cient GAs for solution of this type

of problems we propose to change the search strategy. Instead of the traditional strategy
where the optimal point is reached through steps along feasible points only, we suggest
moving to the optimal point xo via both feasible as well as infeasible points. If the topology
of feasible and infeasible sub-domains is rather complex, the realization of such a strategy
could signi�cantly improve both the accuracy and the e�ciency of the optimization method.
Additionally, this approach allows to signi�cantly extend the applicability range of a method.
The key point is based on the following idea: the information from the infeasible sub-domain
can be very important, because sometimes the path to the optimal point via infeasible points
can be shorter than when utilizing feasible points only (or even the only possible, in the case
of a non-simply-connected feasible sub-domain).
To utilize the new strategy we should extend our search space and by doing this, evaluate in

terms of �tness the individuals that do not satisfy the constraints on the optimization problem.
It is very important to note that the needed extension of �tness function may be rather rough
and non-smooth, because contrary to CG-type optimization methods, the GA methods are not
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restricted by the smoothness of this extension. In fact, such an extension should only satisfy
the condition which immediately follows from the main idea of increasing a diversity of the
current population. Namely, the objective function in infeasible region should be de�ned in
such a manner that keeps in the current population a certain number of infeasible individuals,
which are located rather close to the constraints boundary. In such a situation we can expect
with rather high probability, that the crossover between feasible individuals and the infeasible
ones will produce high-�tness children.
Based on these ideas, the following two-step approach to the extension of the objective

function into infeasible region is proposed. A starting point is to estimate roughly the order of
the objective function value over the feasible sub-domain. It can be done using the preliminary
information on the behaviour of the objective function, or it can be based on testing a number
of feasible points.
Let us assume that the initial estimate has the form: f(x)≈A (x∈Ff ). Based on this

estimation we de�ne the following �rst-step approximation for the modi�ed objective function
f∗(x):

f∗(x)=

{
f(x) if g(x)60

B if g(x)¿0
(3)

where B�A.
The next step in the approach is to run the above described GA for the solution of the

optimization problem (in fact a non-constrained problem) with the �rst-step modi�ed objective
function f∗(x) and to estimate the value of the objective function for feasible individuals in
the neighbourhood of the constraints boundary. Using the results of these calculations, the
�rst-step estimation is corrected: f(x) ≈ C. Then the modi�ed objective function f∗∗(x) for
the total search space F is �nally de�ned as follows:

f∗∗(x)=

{
f(x) if g(x)60

�1C + �2g(x)B if g(x)¿0
(4)

where �1¿1:0 and �2¿0 are problem-dependent real numbers. Note that the second term in
the right-hand side of (4) is proportional to g(x) and its in�uence is small in the vicinity of
the constraints boundary g(x)=0.
It must be emphasized that the estimations of B and C may be rather rough and in fact, only

the order of magnitude of the objective function in the vicinity of the constraints boundary is
required.
Speci�cally in this work, the proposed strategy was implemented in the following way. For

approximation of the upper and lower airfoil surface, a Bezier spline representation was used.
A Bezier curve of order N is de�ned by the Bernstein polynomials BN; i and it is completely
determined by the Cartesian co-ordinates of the control points P̃ki

G̃k(t)=
N∑
i=0
BN; iP̃ki ; BN; i=CiN t

i(1− t)N−i ; CiN =
N !

i!(N − i)! (5)
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where t denotes the parameter of the curve taking values in [0; 1], superscript k= u; l corre-
sponds to upper and lower surfaces of pro�le, i=0; : : : ; N .
We also �x the position of leading and trailing edges and all the abscisses of the control

points. Finally, based on the relations which ensure the smoothness of the airfoil at the leading
edge, a search string S=(a1; a2; : : : ; aN−1; aN ; : : : ; a2N−5) has the following form:

S=

{
ai=yui ; 16i6(N − 1)
ai=yli−N+2; N6i6(2N − 5)

Thus a string S contains 2N −5 values (ordinates of control points). These values vary within
the search domain D. The domain D is determined by Mini and Maxi values, which are the
lower and upper bounds of the variable ai.
Based on the above approach to the handling of constraints, the modi�ed objective function

Q for the solution of drag minimization problem was de�ned as follows:

Q=




0:1 + [(t=c)∗ − (t=c)] if (t=c)¡(t=c)∗

0:2 + [R∗
L − RL] if RL¡R∗

L

0:3 + [�∗
T − �T] if �T¡�∗

T

0:5 if yu(t)¡yl(t)

CD otherwise

(6)

The choice of constants in Equation (6) was fairly straightforward, based on the following
principle. Their values should be at least several times greater than the upper bound of CD
(about 0.0500 for the considered class of problems), which ensures that, for any feasible point,
the value of the objective function will be low in comparison with that of any infeasible point.
On the other hand, these constants should not be too high, in order to ensure that a su�cient
number of infeasible points will be present in the population.
In the case of multipoint optimization the value of Q represents a weighted combination of

the partial modi�ed objective functions Qi corresponding to the �ight points participating in
optimization:

Q=
P∑
i=1
wi ·Qi (7)

It must be stressed that, for all the considered test cases, (including the multipoint optimiza-
tion) the constants appearing in relation (6) remained unchanged.

4. IMPROVEMENT OF COMPUTATIONAL EFFICIENCY OF THE ALGORITHM

Alongside the di�culties associated with handling of constraints, an additional weakness of
GAs lies in their poor computational e�ciency. This prevents their practical use in the case
where the evaluation of the cost function is computationally expensive as it happens in the
framework of the full Navier–Stokes model even in the two-dimensional case.
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For example, an algorithm with the population size M =100 requires (for the case of 200
generations) at least 20 000 evaluations of the cost function (CFD solutions). A fast full
Navier–Stokes evaluation takes at least a couple of minutes of CPU time. That means that
one step of such an algorithm takes about 650 h, which is practically unacceptable.
In order to overcome this, it is proposed to introduce an intermediate ‘computational

agent’—a computational tool which, on the one hand, is based on a very limited number
of exact evaluations of objective function and, on the other hand provides a fast and reason-
ably accurate computational feedback in the framework of GAs search.
With this end in view, we propose to construct a computational agent by means of a ROM

approach. Among the ROM models (in the broad sense of the word) we may mention the
use of simpler gas-dynamic models (see e.g. Reference [28]), representation of the solution
of gas-dynamic problem in terms of its eigenmodes [29] or representation of the aerodynamic
system using the Volterra theory of non-linear systems [30].
In this work we use ROM approach in the form of local approximation method (LAM).

With the ROM–LAM method, the solution functionals which determine a cost function (such
as lift and drag coe�cients in the case of drag minimization), are approximated by a local
data base. The data base is obtained by solving the full Navier–Stokes equations in a discrete
neighbourhood of a basic point positioned in the search space.
So on the one hand, the number of exact estimations of the objective function (full Navier–

Stokes solutions) is proportional to the dimension of the search space. On the other hand, the
computational volume required to provide approximate estimates of the objective function in
the framework of GAs optimum search, is negligible.
Thus the above mentioned requirements of the computational agent, related to its compu-

tational e�ciency, are ful�lled. However, due to the approximate nature of the approach, an
additional e�ort should be made in order to ensure the accuracy and robustness of the method.
To reach this goal a multidomain prediction–veri�cation principle is employed. That is, on

the prediction stage the genetic optimum search is concurrently performed on a number of
search domains. As the result each domain produces an optimal point, and the whole set
of these points is veri�ed (through full Navier–Stokes computations) on the veri�cation stage
of the method, and thus the �nal optimal point is determined.
Besides, in order to ensure the global character of the search, it is necessary to overcome the

local nature of the above approximation. For this purpose it is proposed to perform iterations
in such a way that in each iteration, the result of optimization serves as the initial point for
the next iteration step (further referred to as optimization step).
The speci�c algorithm is described below in the case of single point drag minimization.
Denote x=(an1; a

n
2; : : : ; a

n
2N−5; �

n) point in the search space, where ani and �
n are the Bezier

coe�cients of an initial pro�le at nth optimization step and the angle of attack, corresponding
to the prescribed C∗

L, respectively. Then each airfoil can be determined by deviations �
n
i from

the coe�cients of the initial pro�le. At �xed values of other �ow parameters, the solution
functionals depend on the values of �ni and �

n
� (a deviation from the initial angle of attack).

In the optimization process the following local approximation of a functional Fn is used
(subscript n is omitted and F =CL; CD):

F(a1 + �1; : : : ; a2N−5 + �2N−5; �+ ��)=F◦ +
2N−5∑
j=1
�Fj +�F�
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�Fj=



�F+j if (F+j − F◦)(F−

j − F◦)60; �j¿0

�F−
j if (F+j − F◦)(F−

j − F◦)60; �j¡0

�F+−
j if (F+j − F◦)(F−

j − F◦)¿0

�F+j =
�j
�j
(F+j − F◦); �F−

j = − �j
�j
(F−
j − F◦); �F�=

��
��
(F� − F◦)

�F+−
j =

�j(�j +�j)
2�2

j
F+j − �2j

�2
j
F◦ +

�j(�j −�j)
2�2

j
F−
j

(8)

In approximation (8) the following notation is used:

F◦ = F(a1; : : : ; a2N−5; �); F�=F(a1; : : : ; a2N−5; �+��);

F+j = F(a1; : : : ; aj−1; aj +�j; aj+1; : : : ; a2N−5; �); (j=1; : : : ; 2N − 5)

F−
j = F(a1; : : : ; aj−1; aj −�j; aj+1; : : : ; a2N−5; �); (j=1; : : : ; 2N − 5)

Here the local data base values F◦, F+j , F
−
j and F� are obtained by solving the full Navier–

Stokes equations at the corresponding neighbouring points of the basic point in the search
space. These neighbouring points are determined by positive variations {�j} corresponding
to the Bezier coe�cients {aj} and by the variation �� of the angle of attack �.
In fact, relation (8) represents a mixed linear-quadratic approximation in the neighbourhood

of the basic point xo which employs the local data-base. One-dimensionally, we use either a
one-sided linear approximation (in the case of monotonic behaviour of the functional F) or
a quadratic approximation (otherwise).
Such a reduced second order approximation A2r neglects mixed second derivatives compared

to the full second order approximation of objective function A2f in the vicinity of the basic
point xo. However, the reduced approximation retains a number of properties of the full
approximation which are crucial with optimization in view.
In particular, a simple algebraic analysis shows that if a full quadratic form A2f possesses

a local extremum, then the reduced form A2r also possesses the corresponding extremum at
some point xe. Moreover, it is ensured that the value of A2f at the point xe is nearer to the
extremum of the full form than the value F◦ of the objective function at the basic point. Note
that the stronger is the extremum, the higher is the improvement.
Values of CL and CD calculated via relations (8) were systematically compared with results

of numerical solution of the full Navier–Stokes equations for a wide range of feasible values of
�j. It was concluded that formula (8) possesses acceptable accuracy at least in the following
range of deviations �j and ��:

−2��6��62��; −2�j6�j62�j; (j=1; : : : ; 2N − 5)

Using (8) we can obtain the following formula for cost function CD at prescribed lift
coe�cient C∗

L (for current point at the search space (a1+�1; : : : ; a2N−5+�2N−5)) which is based
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on the local data base CoD, CD� , C
+
Dj , C

−
Dj , C

o
L, CL� , C

+
Lj , C

−
Lj :

CD =CoD +
2N−5∑
j=1
�CDj +

��
��
(CD� − CoD)

�� =
��

CL� − CoL

[
C∗
L − CoL −

2N−5∑
j=1
�CLj

] (9)

5. IMPLEMENTATION OF THE ALGORITHM

The general sketch of the optimization algorithm can be presented by the following pseudo-
code:

opt step=0
Determine Initial Basic Point /starting basic point—initial pro�le/
while not converged do
Calc Local Data Base /CFD computations in a discrete neighbourhood

of the basic point/
Search Optim Candidates /Hybrid GA-ROM search of optimal points for various

search domains/
Veri�cation Optim Cand /CFD computations for optimal points/
Choose New Basic Point /Choose a new basic point—the best one

among all the points in the global CFD data base/
opt step := opt step+ 1
enddo

In what follows a step by step description of the pseudo-code is given.
Step Determine Initial Basic Point: The step deals with determination of Bezier coe�cients

of the initial pro�le (determination of the initial basic point in the search space).
Step Calc Local Data Base: At this step the CFD local data base is obtained by solving

the full Navier–Stokes equations at the neighbouring points of the basic point in the search
space. For given values of variations �j and ��, the values of CL and CD are attained at the
points, corresponding to these variations.
Step Search Optim Candidates: Here, GA is applied for various search domains Dk (cor-

responding to di�erent search scales), and optimal points Ok for each domain are obtained
(k=1; : : : ; ND; ND is the number of the search domains). Fast estimation of objective function
in the framework of GAs optimum search, is performed using local approximation of cost
function (9).
Step Veri�cation Optim Cand: At this step the full Navier–Stokes solver is applied to each

optimal point Ok , and the corresponding data are added to the global CFD data base.
Step Choose New Basic Point: The last step of the iterative optimization loop. A new basic

point is determined as the best point in the global CFD data base.
Roughly speaking, each CFD run requires a di�erent geometry and therefore, the construc-

tion of a new computational grid. To maintain the continuity of optimization stream, the
topological similarity of geometrical con�gurations is used, and the grids are built by means
of a fast automatic transformation of the initial grid.
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Figure 1. Airfoil shapes optimized on the coarse (1levdc) and medium (2levdc)
grids vs original RAE2822 pro�le.

To additionally decrease the volume of computational work, computational grids coarser
than those needed for exact estimations of the objective function are used. This approach may
be applied where the grid coarsening preserves the hierarchy of �tness function values on the
search space (that is, where the relation of order is invariant with respect to grid coarsening).
Formally this condition means that the objective function Qc de�ned on a coarse grid can be
used for solution of the optimization problem, if for every pair of points x1; x2 belonging to
the search space, the following relation between the values of an objective function Qc on a
coarser grid:

Qc(x1)¿Qc(x2) (10)

implies the same order relation for the objective function Qf de�ned on a su�ciently �ne
grid:

Qf (x1)¿Qf (x2) (11)

The applicability of the above principle to the class of optimization problems considered
in this paper, was validated by comparing the values of lift and drag, computed on grids of
di�erent resolution. It appeared that, for the variety of 2D aerodynamic shapes, the method
preserves the hierarchy of drag values for a vast majority of points lying in the parametric
space. For each shape, the CFD computations were performed, employing three sequentially
re�ned grids (labeled coarse, medium and �ne grids). In the most demanding case, where the
coarse grid drag values are compared with those computed on the �ne grid, the percentage of
the reverse hierarchy is only 3.7% while in the case of the medium=�ne comparison, only �ve
violations of hierarchy (out of 1225) were found (0.4%). The results re�ect the ability of the
code to correctly predict the shock position already on relatively coarse grids. In this context,
see also Figures 1–2, where the comparison between two solutions of the same optimization
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Figure 2. Airfoil optimized on the medium grid at the �ight conditions CL =0:0, M =0:6. Surface
pressure distribution at the design point.

problem is presented: the �rst one employed the coarse grid for CFD computations while the
second one used the medium grid.
The use of the ROM–LAM method and grid coarsening allows to reduce the computational

volume by at least 2-3 orders of magnitude. However, the total number of CFD runs is still
measured by hundreds. This may be acceptable on the research level but an additional major
reduction of the overall computation time is vital for the success of the method in engineering
environment. To reach this goal it was suggested to employ an embedded multilevel paral-
lelization strategy which includes: (1) parallelization of full Navier–Stokes solver, (2) parallel
CFD scanning of the search space, (3) parallelization of the GAs optimization process, (4)
parallel optimal search on multiple search domains and (5) parallel grid generation.
The �rst two levels are intended to improve the computational e�ciency of the CFD part

of the whole algorithm, while the next two levels are needed in order to reach the same goal
for the optimization part of the method.
The �rst level parallelization which carries out the parallel Navier–Stokes computations

[22], is based on the geometrical decomposition principle.
The �rst level of parallelization is embedded with the second level, which performs parallel

scanning of the search space and thus provides parallel CFD estimation of �tness function
on multiple geometries. This is applied when executing the steps Calc Local Data Base and
Veri�cation Optim Cand in the pseudo-code of the optimization algorithm.
The third level parallelizes the GAs optimization work unit. This level is embedded with the

fourth level, which performs parallel optimal search on multiple search domains. It is applied
when executing the step Search Optim Candidates in the pseudo-code of the optimization
algorithm.
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Finally we can conclude that the �ve-level parallelization approach allowed us to sustain a
high level of parallel e�ciency on massively parallel machines, and by this way to dramatically
improve the computational e�ciency of the suggested optimization algorithm.
As it is seen from the above pseudo-code, the optimization algorithm includes a number of

markedly di�erent sub-algorithms. In particular, the sub-algorithms dealing with CFD com-
putations and with genetic optimization search may be mentioned. As it usually happens in
practice, such sub-algorithms are not created from scratch, but instead are based on already
existing computational core software (which is much less expensive). Moreover, the basic
core codes may be written in di�erent programming languages. For example, in our case, the
CFD sub-algorithms (employing the core code NES [21, 22]) were written in the C language,
while the GAs sub-algorithms employ FORTRAN-77.
In order to resolve the di�culties due to the above mentioned heterogeneity and to ensure

the correct interaction between the di�erent parts of the pseudo-code, we drive the overall
optimization algorithm by means of a control code, which guides the algorithmic �ow stream.
The control code was written in the C language which facilitates the interconnection of com-
putational and system software and thus increases the ability to manage di�erent executable
codes and system calls.

6. ANALYSIS OF RESULTS

In this section we present the results of optimization which was performed in the framework
of the PVM software package on a cluster of MIMD multiprocessors consisting of 72 HP
NetServer LP1000R nodes. Each node has two processors, 2 GB RAM memory, 512 KB
Level 2 Cache memory and full duplex 100 Mbps ETHERNET interface. In total this cluster
contained 144 processors with 144 GB RAM and 36 MB Level 2 Cache memory.
In the implementation of the GA the population size was equal to 200, while the number

of search domains was equal to 8. In order to ensure the robustness of the GA search, 10
randomly generated initial populations (for each search domain) were employed.
The number of �tness evaluations by means of the approximated relation (9) was equal to

3 200 000 (population size× number of generations× number of initial populations× number
of search domains)=optimization step. The corresponding number of ‘exact’ Navier–Stokes
computations was equal to 63 (36 data base computations + 27 runs for the veri�cation of
optimal points). An average number of optimization steps was about 10.
It is interesting to compare the total number of exact CFD evaluations needed for one

single-point optimization in the framework of the present approach with that required by
the adjoint method [7]. In this book, a similar case (the transonic airfoil drag minimization)
required 50 design iterations. Since each iteration includes several full CFD evaluations, the
total number of such evaluations can be estimated from 100 to 300. This compares favourably
to 630 CFD evaluations required by the current method though these numbers are of the same
order of magnitude.
All the results presented in the paper were obtained by means of the modi�ed objective

function de�ned in (6). No tuning of the parameters appearing in relation (6) was needed
which is indicative of the robustness of the method.
Another important property of the method is its ability to satisfy non-linear constraints with

high accuracy. For example, the constraint imposed on the airfoil thickness was everywhere

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:1339–1362



ROBUST HANDLING OF NON-LINEAR CONSTRAINTS 1353

satis�ed with an accuracy of at least 10−8,

(t=c)− (t=c)∗610−8

The optimization driver CFD solver NES was veri�ed by running a number of 2D and
3D aerodynamic con�gurations over a wide range of subsonic and transonic �ight conditions.
The detailed results of comparison with both experiment and available Navier–Stokes solutions
may be found in References [21, 22]. The comparison showed that the NES computations not
only favourably compare with experiment but also indicate a good grid convergence.
In order to verify the optimization method as a whole, both consistency check as well as

comparison with available results of other authors were performed. The �rst test case was to
�nd an optimal 12% thickness 2D airfoil at the design point CL =0:0, M =0:6 in the fully
turbulent �ow regime. Besides the thickness, additional constraints were imposed on the radius
of leading edge and trailing edge angle.
It is aerodynamically expectable that the resulting optimal shape should be symmetric, and

the veri�cation of this property is a good test to check the consistency of results. In this
connection, in order to make the problem more challenging, a highly asymmetric supercritical
RAE2822 airfoil was chosen as an initial point of optimization.
The multigrid set of computational grids contained three levels. The �ne, medium and coarse

meshes comprised 320× 96, 160× 48 and 80× 24 points in the streamwise and normal to the
surface directions, respectively. The optimization problem was solved twice, based on CFD
computations employing the coarse and medium grids, respectively. Finally, the aerodynamic
characteristics of the optimized airfoils were estimated on the �ne grid.
The corresponding results are presented in Figures 1–2. The optimized aerodynamic shapes

vs original RAE2822 airfoil are shown in Figure 1. It is important to emphasize that the
resulting optimal pro�les are fairly symmetrical in both considered cases, especially taking
into account that the computational meshes originating from the initial asymmetrical airfoil are
far from being symmetric. An additional indication to the symmetry of the optimal solution
may be found in Figure 2, where the surface pressure distribution for the airfoil optimized
on the medium mesh is given.
The optimal shapes corresponding to the coarse and medium CFD computations are rather

close one to another with values of the total drag coe�cient CD equal to 74.1 and 73.5
drag counts, respectively. This additionally justi�es the applicability of the hierarchy principle
described in Section 5.
To further verify the optimization method, the following multipoint optimization of

RAE2822 airfoil was employed. The main design point was M =0:734, CL =0:8, Re=6:5×
106 while the secondary design points were: M =0:754, CL =0:74, Re=6:2× 106 and M =
0:680, CL =0:56, Re=5:7× 106. The target was to minimize a weighted combination of to-
tal drag values at these points with the following weight coe�cients: w1 = 0:5; w2 = 0:25;
w3 = 0:25. The constraints were imposed on airfoil thickness and leading edge radius which
cannot decrease. This optimization problem was used as a test case within the European
project AEROSHAPE [31].
The comparison of drag reduction achieved by the current optimization tool with the

corresponding AEROSHAPE results is summarized in Table I.
It can be observed that the current algorithm achieves an essentially higher drag reduc-

tion, especially at the high transonic �ight conditions. A detailed analysis shows that this is
attributed to a successful shock destruction which allowed to eliminate the most of wave drag.
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Table I. Drag reduction (counts) for multipoint transonic test case.

Design point Current optimization Quagliarella [31]

M =0:734, CL = 0:80 −59:0 −40:0
M =0:754, CL = 0:74 −103:0 −34:0
M =0:680, CL = 0:56 +2:0 +3:0

Note: Comparison between current optimization and the results by Quagliarella [31]. One
aerodynamic count = 0:0001.
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Figure 3. One-point 12% thickness optimizations starting from RAE2822 airfoil. Convergence history
for design points: M =0:75, CL =0:5, CL =0:65 and CL =0:745.

In order to compare the present approach with the gradient-based optimization techniques,
the design point CL =0:65, M =0:75 (a moderate shock case) was employed. The case served
for veri�cation studies in a number of publications, most recently in Reference [6], where the
adjoint approach to viscous aerodynamic shape optimization was applied.
At this point the initial solution (corresponding to the RAE2822 airfoil) gives the total of

149 drag counts (94 counts due to pressure drag and 55 counts due to viscous forces), while
the corresponding drag values in Reference [6] amount to 148, 92 and 56 counts, respectively.
The two initial solutions are in reasonable agreement, thus giving a fair basis for comparison
of the optimization results.
In Reference [6] a reduction of 50 drag counts was achieved when the total drag CD was

used as the objective function. In the present work, a converged (after nine optimization steps)
optimal solution gave the same reduction in the total drag coe�cient value.
The above mentioned convergence rate is typical of the suggested optimization algorithm.

This is illustrated in Figure 3, where convergence history for di�erent optimization cases is
shown.
Since the relative thickness of aerodynamic pro�le is one of its major characteristics, the

in�uence of the constraint (t=c)∗ upon the solution of the optimization problem was studied.
The results are shown in Figures 4–5, where drag polars and shapes of airfoils, optimized at
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Figure 5. Shape of airfoils optimized for di�erent (t=c)∗ values. Design point CL =0:745, M =0:75.

a high design CL =0:745 for di�erent (t=c)∗ values are, respectively, depicted. It is seen that
the above constraint makes a strong impact upon the solution of the optimization problem.
Note, that in accordance with aerodynamic common sense, if no constraints on the solution

are imposed, an optimal shape tends to become in�nitely thin, which is practically infeasible.
The obtained results con�rm the above trend: pro�les optimized for a lower value of (t=c)∗

possess a lower total drag value CD. The above property holds well beyond the design point
CL =0:745 down to CL =0:35, with a certain pay-o� in total drag at lower CL values.
In aerodynamic practice, the global rather than pointwise behaviour of airfoils is essential.

For this reason, in order to estimate the o�-design performance of the optimized airfoils,
it is important to compare (along with the drag polars), Mach drag rise behaviour of the
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Figure 6. Mach drag rise curve at �xed CL =0:745. RAE2822 airfoil vs
pro�les optimized for di�erent t=c.

optimized airfoils, with that of the original RAE2822 pro�le. In Figure 6, Mach drag rise
curves at �xed CL =0:745 are shown, for the original RAE2822 airfoil alongside those for
the optimized airfoils for di�erent (t=c)∗ values.
It is seen that for the original airfoil, the drag divergence occurs immediately after M =0:71.

This means that for RAE2822, the design point CL =0:745, M =0:75 lies far inside the domain
of drag divergence. Note, that all the optimizations result in essential extension of the low
drag zone up to at least M =0:75, and even at lower o�-design Mach numbers, the optimized
pro�les possess a slightly lower drag than the original airfoil.
The requirement of non-zero positive thickness of pro�le in internal points ensures the

absence of ‘�sh-tails’. However this constraint does not ensure the practical feasibility of
airfoil in the trailing edge region. To reach this goal an additional requirement on the trailing
edge angle should be imposed (�∗

T¿0).
The in�uence of �∗

T (minimum allowed value of �T) on the results of optimization is
shown in Figures 7–8. It is seen that the optimization with the value of �∗

T =3:4
◦ leads to a

slightly worse performance at the design lift point and at higher lift values (compared with
the zero value of �∗

T), while it highly favours the lift coe�cients below CL =0:45. In terms of
aerodynamic shape, a more constrained trailing edge optimization produces a more moderate
curvature distribution on the lower surface, especially near the leading and trailing edges of
the pro�le.
The presented results indicate an acceptable level of accuracy, robustness and computa-

tional e�ciency of the suggested optimization method. Essential improvement of aerodynamic
performance has been achieved in high transonic regime optimizing the RAE2822 airfoil.
Note, that the above airfoil was chosen as the starting point in the optimization being an
established test case, though RAE2822 is far from being optimal for the considered �ight
conditions.
For the above reason it was interesting to check the performance of the method starting

from an airfoil which already possesses a fairly good aerodynamic behaviour at the point
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of design. We took as the starting point, a 18% thickness airfoil which was the result of
multipoint optimization by means of the commercial code ISES [32] at the following two
design points: M =0:6, CL =0:4 (point A) and M =0:4, CL =0:75 (point B). The transition
was �xed at 30% of the chord on both upper and lower surfaces.
The current method was applied to the following cases: two single point optimizations

(at the above mentioned design points) and a multipoint optimization using a weighted com-
bination of the total drag values at the same points: CD =0:6 · CD(A) + 0:4 · CD(B).
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Figure 9. Drag polars at M =0:60. One- and two-point optimizations vs original airfoil.
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Figure 10. Drag polars at M =0:40. One- and two-point optimizations vs original airfoil.

The results of the optimization are presented in Figures 9–15. In Figure 9, the drag polar at
M =0:60 for the original airfoil is compared with those corresponding to the above one- and
two-point optimizations, while the respective results at M =0:40 are given in Figure 10. The
corresponding comparisons of the aerodynamic shapes are presented in Figures 11–12 while
the surface pressure distributions at point B are shown in Figures 13–15.
It may be observed that also in this case the method (both in a one-point and two-point

mode) allowed to obtain a signi�cant improvement of the aerodynamic performance at the
design points as well as far beyond them. It is important, that the two-point optimization,
compared to the one-point optimizations, results in an airfoil shape which possesses almost
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Figure 11. Pro�le shape. One- and two-point optimizations vs original airfoil.

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.2 0.4 0.6 0.8 1

Y

X

Airfoil shape. Design point CL=0.75, M=0.4

one-point optimizatio n
two-point optimization

original airfoil

Figure 12. Pro�le shape. One- and two-point optimizations vs original airfoil.

identical drag value at point A while the respective value of CD at point B is only slightly
higher.
Note, that the analysis of surface pressure shows that the upper surface distribution of the

original shape (see Figure 13) is not far from a triangular one. In the view of aerodynamic
common sense, this indicates that the original airfoil is already reasonably good. The opti-
mization at point B leads to a practically triangular distribution (see Figure 14). Additionally,
it can be observed that the new shape is more rear-loaded than the original one. The two-point
optimization retains a triangular form of the upper surface pressure distribution, while the Cp
behaviour in the leading and trailing edge areas is closer to the original one.
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Figure 13. 18% thickness original airfoil. Surface pressure distribution.

Figure 14. 18% thickness one-point optimization. Surface pressure distribution.
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Figure 15. 18% thickness two-point optimization. Surface pressure distribution.

7. CONCLUSIONS

A robust hybrid GA=ROM approach to the multiobjective constrained optimization of aerody-
namic con�gurations is proposed. Novel features of the algorithm include an e�cient treatment
of nonlinear constraints in the framework of GAs and scanning of the optimization search
space by a combination of full Navier–Stokes computations with the ROM method, along with
e�cient multilevel parallelization strategy which makes use of computational power supplied
by massively parallel processors.
The method was applied to the one-point and multipoint optimization of 2D airfoils with

a variety of nonlinear constraints. The results demonstrated that the method retains high
robustness of conventional GAs while keeping CFD computational volume at an acceptable
level due to a limited use of full Navier–Stokes computations. This allowed the employment
of the method in a demanding engineering environment.
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